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The potentialit ies of a plasticine model of a 
polycrystal 

A. C. FERRO, J. C. CONTE*,  M. A. FORTES 
Departamento de Metalurgia, and *Centro de Qu[mica F[sica Molecular, Complexo I, Instituto 
Superior T~cnico, 1000 Lisboa, Portugal 

A plasticine model of a polycrystal has been constructed with a log-normal distribution of 
grain sizes. The polycrystal was dissected grain by grain in order to study the topology 
of the three-dimensional structure. The model was rebuilt with the same grain size distribution 
and sectioned along various planes. Several parameters of the two-dimensional sections were 
determined and correlated with the three-dimensional structure. These experiments show the 
full advantages of this type of model, which have not been exploited previously. 

1. I n t r o d u c t i o n  
Most of the detailed descriptions of the topological 
characteristics of polycrystals have been achieved 
through the analysis of models obtained by pressing 
together round particles of a deformable solid to the 
extent of eliminating all porosity. In this way the 
particles are transformed into space-filling polyhedral 
cells connected as the grains in a polycrystal (or the 
cells in a biological tissue): two polyhedra meet at a 
face (grain boundary or cell wall), three at an edge and 
four at a vertex. After pressing, the polyhedra are 
separated from each other and topologically charac- 
terized (number, polygonality and distribution of their 
faces). A topological analysis of the way the polyhedra 
are connected is also possible. 

There are various examples of studies using models 
of this type. In the thirties several papers were pub- 
lished by Marvin and by Matzke who used pressed 
lead shot and examined the resulting grains by means 
of a dissecting microscope. For example, Marvin [1] 
used lead shot of uniform size and Matzke [2] made 
combinations, in various proportions, of two different 
sizes. In both studies histograms of the frequency of 
grains with F faces were obtained, the average value F 
of F was calculated and the frequencies of faces with 
i sides were determined. 

More recently, Bernal [3, 4] used plasticine balls of 
approximately equal sizes instead of lead shot. The 
balls were rolled in chalk prior to pressing in order to 
make possible the dissection of the individual grains. 
The analysis of the polycrystals obtained in this way 
was not made in detail. 

A soap-froth has also been used as a model of a 
polycrystal. Matzke [5] used this model and described 
in great detail the topology of individual bubbles, 
including the distribution and number of faces in each 
bubble and the polygonality of faces. The paper by 
Matzke includes a review of the work with the lead 
shot model and a comparison of the two models with 
natural biological structures. 

The direct topological analysis of a .polycrystal 
can be achieved by the serial section technique, as 

described by Rhines et al. [6]. The method is not easy 
and is very time consuming, but it allows, at least in 
principle, a complete topological and geometrical 
characterization of a polycrystal. Due to its short- 
comings the method has never been used to its full 
potential. 

Stereoscopic microradiography is another tech- 
nique for the analysis of real polycrystals [7, 8], but 
is of course of limited application. The same can be 
said about the method based on the fragmentation of 
a polycrystal upon embrittlement of its grain bound- 
aries [8]. 

Finally, it should be noted that polycrystals have 
been simulated in a computer for various purposes 
(e.g. [9, 10]) but not, as far as we know, to study 
topological characteristics in detail. 

In practice, the information that can be collected on 
the topology of a polycrystal (and of most biological 
tissues) is obtained from observations on planar sec- 
tions of the structure. The interrelation between 
metric characteristics of the 3-D structure and those of 
the 2-D sections is, in general, well understood (e.g. 
[11]) with the notable exception of the lack of an 
accurate method to find the average grain volume [10]. 
In contrast, virtually nothing is known about 
the corresponding correlation between topological 
properties. 

The purpose of this paper is to show the full poten- 
tialities of the plasticine model of a polycrystal for 
studies of various topological problems. In relation to 
previous work using this and related models, we 
exploit the possibility of having a pre-chosen distribu- 
tion of grain sizes and the possibility of making planar 
sections of the model which can then be analysed in 
various respects and correlated with the 3-D structure. 
Examples of various parameters, which were exper- 
imentally determined from the plasticine model using 
a log-normal distribution of grain volumes, will be 
given for both the 3-D structure and the 2-D sections. 

2. The model  
A number N of plasticine balls, of different colours to 
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Figure 1 Distribution of  grain sizes used in the experiments. The 
distribution is nominally log-normal; the points were determined by 
counting the number of  grains in classes of  amplitude 1 g 
( ~ 0.54 cm 3). 

facilitate the collection of data, are prepared accord- 
ing to a pre-chosen distribution n(V) of  volumes. The 
volumes V are determined by weighing: n(V) d V is the 
number of  balls in the volume interval V, V + d V. 

Each ball is rolled in common sugar crystals. This is 
a vital precaution to guarantee the ease of  separation 
of  the individual grains after compression. The sugar- 
covered balls are introduced at random (or otherwise) 
in a prismatic open mould and compressed into a 
lump of zero porosity in a press. The polycrystal so 
obtained can be analysed in two ways, after determin- 
ing the average volume per grain l? from N and the 
direct measurement of the volume (weight) of  the 
lump: 

(a) Three-dimensional observations, grain by grain, 
including the number F of  faces per grain, the corre- 
lation between F and V, the volume of  each grain, the 
polygonality of  the faces and neighbour relations. 

(b) Observations on planar sections of the lump, 
following planes of different orientations. The sections 
can be analysed to find PL and PA (respectively the 
number of 2-D edge intersections per unit length of  
random lines and the number of 2-D vertices per unit 
area of  the section), the number of  sides i and the area 
A of  the various polygons in the section, and neigh- 
bour relations. 

3. Experimental procedure 
Four hundred plasticine balls (density of  plasticine 
1.85 g cm -3) was prepared to give a log-normal distri- 
bution of  grain volumes: 

1 [ (ln v/vq 2] 
n(V;cr, V0) = ( 2 ~ 2 ) t / 2 ~ e x p _ -  \ ~ } j  (1) 

The following values were used: o -=  0.35; V0 = 
8.4cm 3 (15.5 g). Balls in classes of  amplitude 1 g were 
prepared in the range 0 to 50g, according to the 
distribution in Equation 1. In each class the weights 
were random. The experimental distribution curve is 
shown in Fig. 1. The sugar-covered bails were 
introduced into a prismatic box (base 160ram x 
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Figure 2 Orientations of  planar sections in the plasticine polycrystal 
used in the determinations of  two-dimensional parameters. 

160mm) and pressed to produce a porosity free, 
approximately cubic, lump. The force used was over 
20 kN and the total displacement of  the face in contact 
with the press was approximately 10cm. The exper- 
iment was repeated with the same balls after collecting 
data on the individual, separated grains. A similar 
analysis was made for the polycrystal obtained upon 
the second compression. The planar cuts were made 
after a third compression of the same distribution and 
for three orientations of  the planes, shown in Fig. 2. 
Four  parallel sections were made for orientations 1 
and 3, and five for orientation 2. After each cut, the 
two halves were stuck together. 

The fraction of  peripheral grains in the lump was 
approximately 0.35. These grains and their planar 
sections were analysed in a special way, by considering 
that the 3-D or 2-D structure was part of the unit cell 
(in the crystallographic sense) of a periodic structure. 
Details of  this method will be described elsewhere. 

4. Results 
4.1. Three-dimensional structure 
The faces of the plasticine polyhedra are very well 
defined but slightly curved, and the number of  sides in 
each can easily be counted. Nevertheless we have not 
made determinations along this line. All edges have 
three faces and all vertices have four edges. 

The data to be presented are the average of  the two 
experiments using the same distribution. The disper- 
sion of  results between the two experiments was found 
to be small and examples will be given below. 

The average volume was 17" = 8.8cm 3. The 
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Figure 3 The number  of  grains as a function of  the number  of  their 
faces. 

distribution of grains according to the number of faces, 
F, is shown in Fig. 3. The average values/5 obtained in 
the two experiments were 12.63 and 13.21; we take 
F = 12.92. The minimum number of faces found in a 
grain was 7 and the maximum 22. Fig. 4 gives, for 
constant F, the number of grains as a function of grain 
volume V. It is apparent that there is a tendency for 
large grains to have a larger number of  faces. The 
average volume of  grains with a given F is shown as a 
function of F in Fig. 5. Similar data are shown in 
Fig. 6, where the average number of  faces is plotted as 
a function of  volume. In this figure the results 
obtained in the two experiments are shown separately. 
The small dispersion observed (cf. the values of P for 
the two experiments) can be due to a different initial 
distribution of  the balls in the mould. Both plots in 
Figs. 5 and 6 are nearly linear. 

4.2. Two-dimensional sections 
Fig. 7 shows a typical section parallel to the com- 
pression direction (type 1 section, see Fig. 2). It is 
apparent that the 2-D edges are curved, reflecting the 
non-planarity of  the grain boundaries. 
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Figure 4 Distribution of  grain sizes of  constant  number  of  faces, 
between 8 and 18. Dotted curves are drawn for convenience, 
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Figure 5 The average volume of  grains with the same number  of 
faces, F. 

The following results for each type of  section are the 
average for the various sections analysed with the 
same orientation. In some cases only the average 
values for all orientations are indicated. The fre- 
quency of polygons with i sides is shown in Fig. 8a for 
each of  the three orientations used in the cuts. The 
average values for all sections are shown in Fig. 8b. 
Fig. 9 gives the average area of polygons as a function 
of i. The individual areas were determined by drawing 
the 2-D network on hard paper, cutting along the 
edges and weighing. The correlation A(i) is nearly 
linear. Figs 10a and b show curves for the number of  
grains as a function of area, for each i and for all 
polygons, respectively. These can be compared with 

F 

15. 

10- 

o 

o �9 

o 

o 
@ �9 

lb l's 
Volume, V (cmJI 

Figure 6 Average number  of  faces in grains with a given volume. 
The results of  two compressions are shown separately. (O) First 
compression, (O) second compression. 
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Figure 7 Grains in a section of  type 1 (see Fig. 2) in the plasticine 
lump. 

the corresponding curves for the 3-D structure, shown 
in Figs. 1 and 4, respectively. 

Table I shows additional data obtained for the three 
sections, which includes: 

(i) the second moment #2 of  the frequency distribu- 
tion f ( i ) ;  ~t2 is the average value of  (i - 6) 2 and is a 
measure of the dispersion around the average value 
7 = 6 .  

(ii) the average area per grain ,d and the average 
grain diameter /3  = (4A/~z) w2. 

(iii) the average line intersect/ ' (1-= 1 / P L ) .  

The average area is determined from PA, the number 
of  2-D vertices per unit area, with PA = 2///. The 
variation of ,4 and l f r o m  section to section (Table I) 
is as expected. Using standard equations of stereology, 
the total length L v of 3-D edges and the total area Sv 
of grain bo'undaries, both per unit volume, can be 
determined from the average values of  PL and PA. We 
found Lv = 1.21cm -2 and Sv = 1.26cm -1. These 
values have been used to test the following equation 
recently derived by Hanson [10] to obtain the average 

T A B L E  I Parameters of  planar sections 

Section type if2 A (cm 2) /3 (cm) [(cm) a 

1 2.047 2.96 1.94 1.47 0.931 0.926 
2 2.572 3.33 2.06 1.56 1.107-1.115 
3 2.700 3.78 2.19 1.76 1.069-1.065 
Mean value - 3.36 2.06 1.59 - 

grain volume from 2-D observations 

{4.83 2.9104~ 3 
= \ - L V  .) (2) 

The equation gives 17" = 9.1 cm 3 which compares very 
well with the measured volume I 7" = 8.8 cm 3. 

Finally determinations of  re(i) were also made; r e ( i )  

is the average number of  sides in polygons adjacent to 
polygons with i sides. The intention was to test the 
following relation according to Aboav [12] and 
Weaire [13] 

6a + P2 
r e ( i )  = 6 - a + - -  (3) 

i 

where a is a constant. The linear relation on 1 / i  is fairly 
well obeyed for any of the sections, as shown in 
Fig. 11. The values of  a are indicated in Table I; in 
each case, the first value was determined from the 
slope and the second from the intercept of  the straight 
lines of Fig. 11. 

5. C o n c l u s i o n  
The potentialities of  a plasticine model of a poly- 
crystal in studies of  topological properties have been 
illustrated in experiments in which a log-normal 
distribution of grain volumes was used. The main 
advantages of this model, compared to previously used 
similar models, are the possibility of  choosing the 
grain size distribution and of making studies in planar 
sections of the polycrystal which can then be correlated 
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Figure 8 (a) F r e q u e n c y f o f  polygonal grains with i sides in planar sections of  each of  the types indicated in Fig. 2. Section type e ,  1; w, 
2; O, 3. (b) Average frequency of/-sided grains; the average is the arithmetic mean for the three types of  sections. 
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Figure 9 Average area of  grains with i sides in the three sections. 
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Figure 11 The average number of sides, m(i), in grains adjacent to 
/-sided grains, in planar sections of each type, plotted as a function 
of 1/i. The straight lines were determined by a standard best fitting 
method. Section type: e, type 1; O, type 2; O, type 3. 

with the 3-D determinations. Another  not insignifi- 
cant advantage is the possibility of  determining the 
average volume per grain, a quantity that cannot  be 
obtained with precision from 2-D observations. 

The model has some disadvantages. The first is that 
it probably cannot reproduce all grain and biological 
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Figure 10 The number of grains in planar sections as a function of 
area: (a) for constant number of sides, mean value for the three 
sections; (b) for all polygons in each type of  section: l ,  type 1; o ,  
type 2; 0 ,  type 3. 

cell structures. In particular the faces are curved, 
a characteristic that  has not been mentioned in the 
literature describing similar models. The structure 
obtained is analogous to the Johnson-Mehl  structure 
[9, 14], including the average _F. The diameter of  a ball 
is probably related to the "t ime of nucleation" par- 
ameter used in the Johnson-Mehl  model, although in 
this model the nucleation sites are randomly distri- 
buted in space and the grain volume distribution is not 
log-normal. 

The fact that the plasticine polycrystal is oriented, 
due to the uniaxial deformation, implies that  differ- 
ently oriented sections will lead to different par- 
ameters, requiring some averaging in order to corre- 
late with the 3-D parameters.  This can be regarded as 
an advantage if one wishes to study the anisotropy of  
2-D sections in oriented structures. 
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